

Pressure Cycling of Dive Chambers

Duncan Watson

Nov 2021

Discussion and Acknowledgements

We have been working with 4Subsea and DNV on pressure cycling of dive chambers, with the same goal – avoiding hydro testing and reducing overpressure testing gas to extend the life of the chambers.

Specific acknowledgements for work carried out to should go to:

Matthew Watson at Subsea7

Arnfinn Hansen at DNV

Hedda Sofie Sjøvaag at 4Subsea

Why do we test?

It's the rules - We have to test our pressure vessels (PVHO).

The very testing that we were carrying out was likely to be reducing the life of the chambers.

The Options

- Hydraulic Overpressure test
 This brings lots of challenges, not least stripping out time (and subsequent rebuild) of the chamber and a lot of weight being added during the actual test.
- Gas leak testing at MAWP and Eddy Current (ET) Testing to be carried out on the outside part of some pre-defined welds.

DNVGL-RU-OU-0375

• 1.3.1 Chamber and bells For systems having digital pressure monitoring with a record of the actual cycles experienced, testing shall be invoked when 20% of the design fatigue life have been reached for the worst-case chamber. For systems not able to provide documentation of the pressure cycling since new, testing shall be invoked at a 10-year cycling basis.

The Solution

- Use the data that we have.
- After all, how hard can it be? We already have the sensors, and the saved data.

Sensors

The data.

- Seven Falcon is fully NORSOK compliant so there is a lot of data stored.
- We narrowed down the sensors to pressure and temperature.
- One day produces over 118000 outputs. This was a normal diving day!

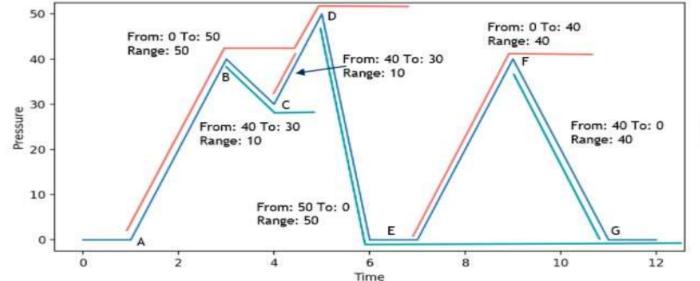
118631	SDS/04TX	081ZF02/Se	nsor.fValu	ie;2014-12-	19 01:39:0	7.000;0.409	420999999	99998
118632	SDS/04TX	081ZF03/Se	nsor.fValu	ie;2014-12-	19 01:39:0	7.000;0.559	734999999	99998
118633	SDS/04TX	081ZF04/Se	nsor.fValu	ue;2014-12-	19 01:39:0	7.000;0.492	2800000000	00002
118634	SDS/04TX	081ZP09/Se	nsor.fValu	ue;2014-12	-19 01:39:0	7.000;0.552	2254000000	000002
118635	SDS/04TX	081ZP06/Se	nsor.fValu	ue;2014-12	-19 01:39:0	7.000;-0.82	2000200000	000001
118636	SDS/04TX	081ZQ01/S	ensor.fVal	ue;2014-12	-19 01:39:0	7.000;194.	4444430000	00001
118637	SDS/04TX	081ZQ02/S	ensor.fVal	ue;2014-12	-19 01:39:0	7.000;2.63	3102000000	00001
118638	SDS/04TX	081ZT03/Se	nsor.fValu	ue;2014-12-	-19 01:39:0	7.000;14.88	37153	
118639	SDS/04TX	082ZP50/Se	nsor.fValu	ue;2014-12	-19 01:39:0	7.000;-13.7	361109999	99999
118640	SDS/04TX	082ZP60/Se	nsor.fValu	ue;2014-12	-19 01:39:0	7.000;0.0		
118641	SDS/04TX	082ZP70/Se	nsor.fValu	ue;2014-12	-19 01:39:0	7.000;-0.34	365299999	999999
118642	SDS/04TX	082ZP80/Se	nsor.fValu	ue;2014-12	-19 01:39:0	7.000;-0.11	4409	
118643	SDS/04TX	082ZT50/Se	nsor.fValu	ue;2014-12-	19 01:39:0	7.000;48.64	1137999999	9998
118644	SDS/04TX	082ZT60/Se	nsor.fValu	ie;2014-12-	19 01:39:0	7.000;-46.0		
118645	SDS/04TX	082ZT70/Se	nsor.fValu	ie;2014-12-	19 01:39:0	7.000;48.42	2812299999	9999
118646								

4insight® Data Analytics

- Data Analytics.
- This is really where the project started to come together.
- DNV gave us options, we knew what we wanted, but didn't really know how to get there.
- Enter 4Subsea. 4Subsea is a company in the Subsea 7 Group.
- And data is what they do!
- It's not just as simple a drop the numbers into a chart.

Rainflow Counting

 When counting part cycles, the rainflow-counting technique in accordance with ASTM E1049-85 Standard Practice for Cycle Counting in Fatigue Analysis, shall be used.


The Rainflow counting method

- 1. Reduce the time history to a sequence of peaks and valleys.
- 2. Count number of half-cycles. Each half-cycle starts at a peak/valley and is terminated when either
 - It reaches the end of the time-series
 - It merges with a flow starting at an earlier peak/valley
- It meets a peak/valley which is larger/smaller or equal to the peak/valley the cycle originated from
- 3. Assign a magnitude to each cycle by calculating the pressure difference between its start and termination.
- 4. Organize half-cycles in bins of different pressure-range.
- 5. Use the pressure-range distribution to calculate total damage, as seen in "Damage calculation"

Example

- 1. Counting half-cycles originating from valleys (red marker):
 - A-D: half-cycle terminates at (E). (E) is of the same magnitude as (A).
 - C-B: half-cycle terminates as it merges with a flow starting at an earlier valley (A-D).
 - E-F: half-cycle terminates at (G). (G) is of the same magnitude as (E).
- 2. Counting originating from peaks (green marker):
 - B-C: half-cycle terminates at (D). (D) is of the larger magnitude as (B).
 - D-E: half-cycle terminates as it reaches the end of the time-series.
 - F-G: half-cycle terminates as it merges with a flow starting at an earlier peak (D-E).

Range	Cycles	Events
10	0.5 + 0.5	B-C, C-D
40	0.5 + 0.5	E-F, F-G
50	0.5 + 0.5	A-D, D-E

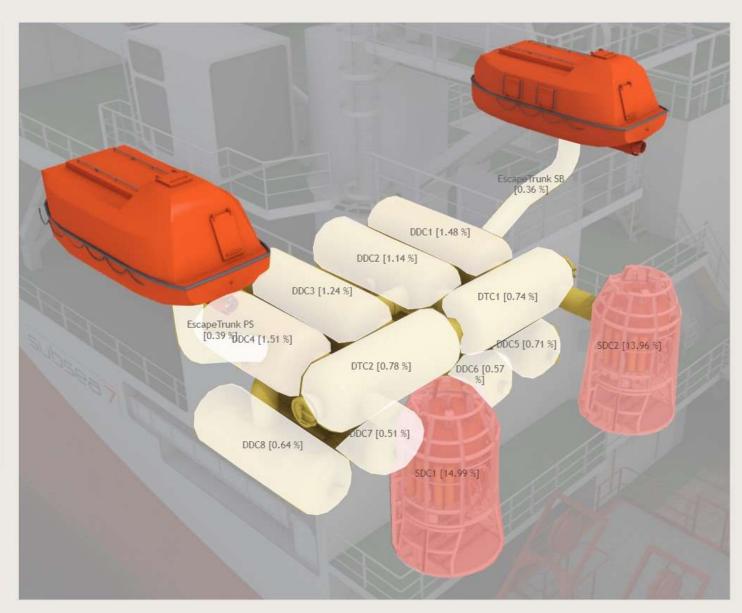
Calculation of damage

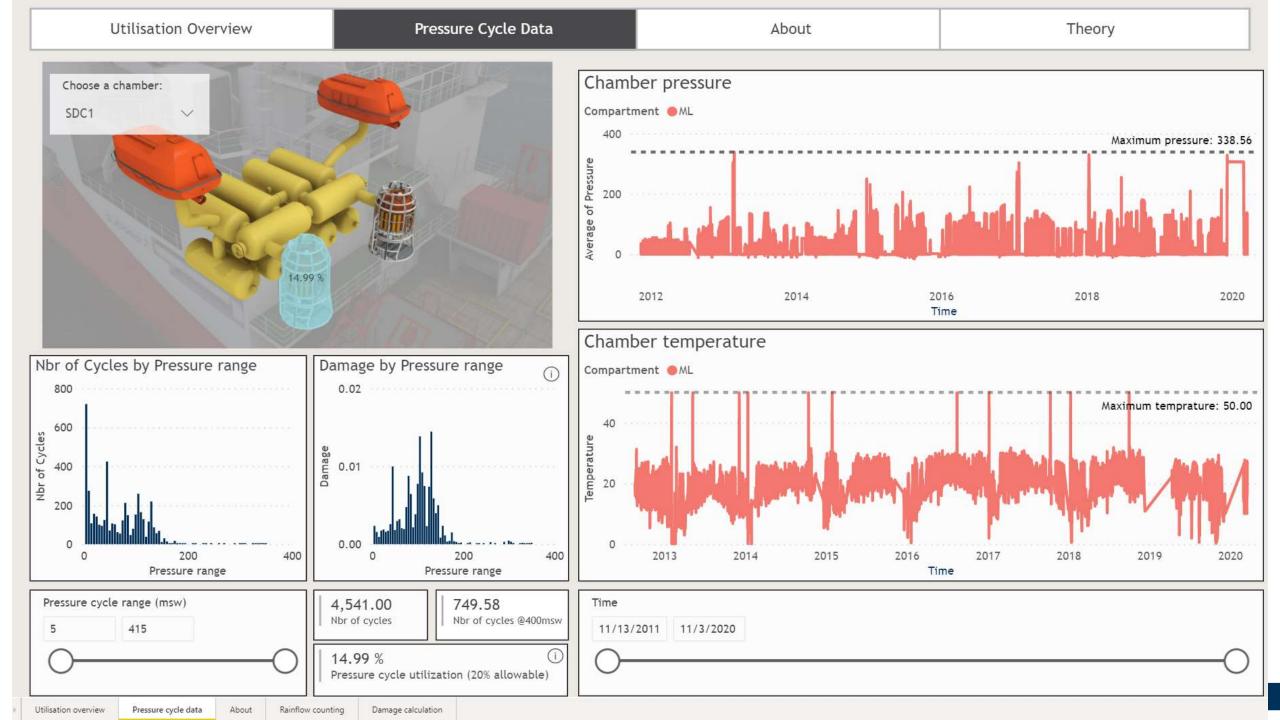
 In order to calculate the accumulated material damage caused by the part cycles, the following equation shall be used:

Fatigue Damage =
$$\sum_{Pressure\ range} \frac{\left(\frac{Pressure\ range}{MAWP}\right)^{m} * Number\ of\ cycles}{C}$$

Where;

Pressure range is the maximum pressure for the part cycle


MAWP = Maximum Allowable Working Pressure


m = 1

C = Number of fatigue cycles used for design

Chamber	Pressure Cycle Utilization (20% allowable)	
SDC1	14.99 %	
SDC2	13.96 %	
DDC4	1.51 %	
DDC1	1.48 %	
DDC3	1.24 %	
DDC2	1.14 %	
DTC2	0.78 %	
DTC1	0.74 %	
DDC5	0.71 %	
DDC8	0.64 %	
DDC6	0.57 %	
DDC7	0.51 %	
EscapeTrunk PS	0.39 %	
EscapeTrunk SB	0.36 %	

ressure cy	cle range (msw)	
5	419	
0-		

Conclusions

- We are able to accurately demonstrate the pressure cycles of our chambers.
- The vast majority are not even close to their 20% fatigue life 'test' point.
- This reduces testing which we know can increase fatigue -ultimately increasing the life of the chambers.

© Subsea 7 - 2021

- This reduces the need to use scarce resources, eg helium.
- It reduces personnel risk.
- It reduces equipment downtime.
- We can target specific testing to higher fatigue areas (specific welds).

THANK YOU

subsea 7